题目内容
1.与平面向量$\overrightarrow{a}$=(-$\frac{1}{3}$,-$\frac{2}{3}$)垂直的单位向量的坐标为$({\frac{{2\sqrt{5}}}{5},-\frac{{\sqrt{5}}}{5}})$或$({-\frac{{2\sqrt{5}}}{5},\frac{{\sqrt{5}}}{5}})$.分析 设单位向量为$\overrightarrow{b}$=(x,y),由单位向量性质和平面向量$\overrightarrow{a}$=(-$\frac{1}{3}$,-$\frac{2}{3}$)与$\overrightarrow{b}$垂直,列出方程组能求出结果.
解答 解:设单位向量为$\overrightarrow{b}$=(x,y),则x2+y2=1.
∵平面向量$\overrightarrow{a}$=(-$\frac{1}{3}$,-$\frac{2}{3}$)与$\overrightarrow{b}$垂直,
∴$\overrightarrow{a}•\overrightarrow{b}$=$(-\frac{1}{3},-\frac{2}{3})•(x,y)=-\frac{x}{3}-\frac{2y}{3}=0$,
化简得x+2y=0.联立$\left\{\begin{array}{l}{x^2}+{y^2}=1\\ x+2y=0\end{array}\right.$,得$\left\{\begin{array}{l}x=\frac{{2\sqrt{5}}}{5}\\ y=-\frac{{\sqrt{5}}}{5}\end{array}\right.$或$\left\{\begin{array}{l}x=-\frac{{2\sqrt{5}}}{5}\\ y=\frac{{\sqrt{5}}}{5}.\end{array}\right.$,
∴$\overrightarrow{b}$=$({\frac{{2\sqrt{5}}}{5},-\frac{{\sqrt{5}}}{5}})$或$\overrightarrow{b}$=$({-\frac{{2\sqrt{5}}}{5},\frac{{\sqrt{5}}}{5}})$.
故答案为:$({\frac{{2\sqrt{5}}}{5},-\frac{{\sqrt{5}}}{5}})$或$({-\frac{{2\sqrt{5}}}{5},\frac{{\sqrt{5}}}{5}})$.
点评 本题考查与已知向量垂直的单位向量的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.
| A. | B. | C. | D. |