题目内容
12.设集合U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,5,6},则A∩(∁UB)=( )| A. | {1,2} | B. | {1,2,7} | C. | {1,2,4} | D. | {1,2,3} |
分析 根据补集与交集的定义,写出运算结果即可.
解答 解:集合U={1,2,3,4,5,6,7},
A={1,2,3,4},B={3,5,6},
则∁UB={1,2,4,7},
所以A∩(∁UB)={1,2,4}.
故选:C.
点评 本题考查了补集与交集的运算问题,是基础题目.
练习册系列答案
相关题目
2.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的焦距为8,则m的值为( )
| A. | 3或$\sqrt{41}$ | B. | 3 | C. | $\sqrt{41}$ | D. | ±3或$±\sqrt{41}$ |
3.若三棱锥的三条侧棱两两垂直,侧棱长分别为1,$\sqrt{3}$,2,且它的四个顶点在同一球面上,则此球的体积为( )
| A. | $\frac{{2\sqrt{2}}}{3}π$ | B. | $3\sqrt{3}π$ | C. | $\frac{{8\sqrt{2}}}{3}π$ | D. | 8π |
20.设p:x<3,q:-1<x<2,则p是q成立的( )
| A. | 充分必要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
17.在平行四边形ABCD中,O是对角线的交点,E是边CD上一点,且CE=$\frac{1}{3}$CD,$\overrightarrow{OE}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$,则m+n=( )
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{6}$ |