题目内容

在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ=cosθ.
(1)求曲线C的直角坐标方程;
(2)若直线L的参数方程为
x=2-
2
2
t
y=
2
2
t
(t为参数),直线L与曲线C相交于A、B两点,求|AB|.
考点:直线的参数方程,简单曲线的极坐标方程
专题:坐标系和参数方程
分析:(1)利用公式
x=ρcosθ
y=ρsinθ
化简ρ2sin2θ=ρcosθ,得到曲线C的直角坐标方程;
(2)把直线的参数方程代入曲线C的普通方程中,得到方程t2+
2
t-4=0;
由根与系数的关系得t1+t2,t1t2,求出|AB|=|t1-t2|.
解答: 解:(1)把
x=ρcosθ
y=ρsinθ
代入ρ2sin2θ=ρcosθ中,
化简,得y2=x,
∴曲线C的直角坐标方程为y2=x;
(2)把
x=2-
2
2
t
y=
2
2
t
代入曲线C的普通方程y2=x中,
整理得,t2+
2
t-4=0,且△>0总成立;
设A、B两点对应的参数分别为t1、t2
∵t1+t2=-
2
,t1t2=-4,
∴|AB|=|t1-t2|=
(-
2
)
2
-4×(-4)
=3
2
点评:本题考查了参数方程与极坐标的应用问题,解题时应把参数方程与极坐标化为普通方程,再进行解答,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网