题目内容

已知函数f(x)=
1+ln(x+1)
x
(x>0).
(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(2)若f(x)>
k
x+1
恒成立,求整数k的最大值;
(3)求证:22×33×44×55×…×nn×(n+1)n+1>e n2
考点:利用导数研究函数的单调性,导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(1)通过求导得f′(x)<0,从而问题解决,
(2)f(x)>
k
x+1
恒成立,即h(x)=
(x+1)[1+ln(x+1)]
x
>k即h(x)的最小值大于k.而h′(x)=
x-1-ln(x+1)
x2
,记g(x)=x-1-ln(x+1),(x>0),g(x)=0存在唯一实根a,且满足a∈(2,3),a=1+ln(a+1),从而解决问题,
(3)由(2)知
1+ln(x+1)
x
3
x+1
,(x>0),化简可得ln(x+1)x+1>2x-1,相加得:ln22+ln33+…+ln(n+1)n+1>2×1-1+2×2-1+…+2n-1,即 ln22+ln33+…+ln(n+1)n+1>n2,从而问题证出.
解答: 解:(1)f′(x)=-
1
x2
[
1
x+1
+ln(x+1)],
∵x>0,∴x2>0,
1
x+1
>0,ln(x+1)>0,
∴f′(x)<0,
∴f(x)在(0,+∞)上是减函数.
(2)f(x)>
k
x+1
恒成立,即h(x)=
(x+1)[1+ln(x+1)]
x
>k即h(x)的最小值大于k.
而h′(x)=
x-1-ln(x+1)
x2
,记g(x)=x-1-ln(x+1),(x>0),
则g′(x)=
x
x+1
>0,∴g(x)在(0,+∞)上单调递增,
又g(2)=1-ln3<0,g(3)=2-2ln2>0,
∴g(x)=0存在唯一实根a,且满足a∈(2,3),a=1+ln(a+1),
当x>a时,g(x)>0,h′(x)>0,
当0<x<a时,g(x)<0,h′(x)<0,
∴h(x)min=h(a)=
(a+1)[1+ln(a+1)]
a
=a+1∈(3,4),
故正整数k的最大值是3,
(3)由(2)知
1+ln(x+1)
x
3
x+1
,(x>0),
化简可得ln(x+1)x+1>2x-1,
∴ln22>2×1-1,ln33>2×2-1,…,ln(n+1)n+1>2n-1,
相加得:ln22+ln33+…+ln(n+1)n+1>2×1-1+2×2-1+…+2n-1,
即 ln22+ln33+…+ln(n+1)n+1>n2
∴22×33×44×55×…×nn×(n+1)n+1>e n2
点评:本题考察了函数的单调性,函数的最值,不等式的证明,导数的应用,是一道综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网