ÌâÄ¿ÄÚÈÝ

15£®ÒÑÖª$\overrightarrow{m}$=£¨$\sqrt{3}$sin¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨cos¦Øx£¬-cos¦Øx£©£¨¦Ø£¾0£¬x¡ÊR£©£¬f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$ÇÒf£¨x£©µÄͼÏóÉÏÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èô¡÷ABCÖÐÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬cÇÒb=$\sqrt{7}$£¬f£¨B£©=0£¬sinA=3sinC£¬Çóa£¬cµÄÖµ¼°¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨1£©¸ù¾Ýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$£¬ÀûÓÃÏòÁ¿µÄÔËÓã¬Çó½âf£¨x£©½âÎöʽ£¬»¯¼ò£¬¸ù¾Ýf£¨x£©µÄͼÏóÉÏÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®Çó½â¦Ø£®¼´¿ÉÇó½âº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©¸ù¾Ýf£¨B£©=0£¬Çó½âB½Ç´óС£®ÀûÓÃb=$\sqrt{7}$£¬sinA=3sinC£¬ÕýÓàÏÒ¶¨ÀíÇó½âa£¬cºÍ¡÷ABCµÄÃæ»ý£®

½â´ð ½â£ºÓÉÌâÒ⣺$\overrightarrow{m}$=£¨$\sqrt{3}$sin¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨cos¦Øx£¬-cos¦Øx£©£¨¦Ø£¾0£¬x¡ÊR£©£¬
ÓÉf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$=$\sqrt{3}$sin¦Øxcos¦Øx-cos2¦Øx$-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2¦Øx$-\frac{1}{2}$cos2¦Øx-1=sin£¨2¦Øx$-\frac{¦Ð}{6}$£©-1
¡ßÏàÁÚÁ½¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬
¡àT=$\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{2}$£¬
¡à¦Ø=1
º¯Êýf£¨x£©µÄ½âÎöʽΪ$f£¨x£©=sin£¨2x-\frac{¦Ð}{6}£©-1$£®
£¨1£©Áî$2k¦Ð-\frac{¦Ð}{2}¡Ü2x-\frac{¦Ð}{6}¡Ü2k¦Ð+\frac{¦Ð}{2}£¬Ôòk¦Ð-\frac{¦Ð}{6}¡Üx¡Ük¦Ð+\frac{¦Ð}{3}$£®
¡àf£¨x£©µÄµ¥ÔöÇø¼äΪ$[k¦Ð-\frac{¦Ð}{6}£¬k¦Ð+\frac{¦Ð}{3}]£¬k¡ÊZ$£®
$\begin{array}{l}£¨2£©f£¨B£©=sin£¨2B-\frac{¦Ð}{6}£©-1=0£¬\\¡ß0£¼B£¼¦Ð£¬\\¡à-\frac{¦Ð}{6}£¼2B-\frac{¦Ð}{6}£¼\frac{11¦Ð}{6}£¬\\¡à2B-\frac{¦Ð}{6}=\frac{¦Ð}{2}£¬\\¡àB=\frac{¦Ð}{3}£¬\end{array}$
$\begin{array}{l}sinA=3sinC£¬\\¡àa=3c£®\end{array}$
ÔÚ¡÷ABCÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£º
$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{9{c^2}+{c^2}-7}}{{6{c^2}}}=\frac{{10{c^2}-7}}{{6{c^2}}}=\frac{1}{2}$£¬
¡àc=1£¬a=3£®
${S_{¡÷ABC}}=\frac{1}{2}acsinB=\frac{1}{2}¡Á3¡Á1¡Á\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÔËËãºÍÈý½Çº¯ÊýµÄ»¯½âÄÜÁ¦£¬ÕýÓàÏÒ¶¨ÀíµÄÔËÓ㬿¼²é¼ÆËãÄÜÁ¦£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø