题目内容

19.数列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n项和为(  )
A.$\frac{2n}{2n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+2}{n+1}$D.$\frac{n}{2n+1}$

分析 求出通项公式的分母,利用裂项消项法求解数列的和即可.

解答 解:$\frac{1}{1+2+…+n}$=$\frac{1}{\frac{n(n+1)}{2}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$).
数列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n项和:
数列1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+n}$=2(1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+…$+\frac{1}{n}-\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.
故选:B.

点评 本题考查数列求和的方法,裂项消项法的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网