题目内容

4.已知不等式x2-5ax+b>0的解集为{x|x>4或x>1}
(1)求实数a,b的值;
(2)若0<x<1,f(x)=$\frac{a}{x}+\frac{b}{1-x}$,求f(x)的最小值.

分析 (1)根据题意,分析可得方程x2-5ax+b=0的两个根是1和4,由根与系数的关系分析可得5a=1+4,b=1×4,解可得a、b的值;
(2)由(1)知f(x)的解析式,由基本不等式分析可得答案.

解答 解:(1)根据题意,不等式x2-5ax+b>0的解集为{x|x>4或x>1},
则方程x2-5ax+b=0的两个根是1和4,
则有5a=1+4,b=1×4,
即a=1,b=4;
(2)由(1)知$f(x)=\frac{1}{x}+\frac{4}{1-x}$,
因为0<x<1,所以0<1-x<1,所以$\frac{1}{x}>0,\frac{4}{1-x}>0$
所以$f(x)=\frac{1}{x}+\frac{4}{1-x}=({\frac{1}{x}+\frac{4}{1-x}})[{x+({1-x})}]$=$5+\frac{1-x}{x}+\frac{4x}{1-x}$$≥5+2\sqrt{\frac{1-x}{x}•\frac{4x}{1-x}}$=9
当且仅当$\frac{1-x}{x}=\frac{4x}{1-x}$,即$x=\frac{1}{3}$时,等号成立.所以f(x)的最小值为9.

点评 本题考查一元二次不等式的解法以及基本不等式的应用,关键是求出a、b的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网