题目内容

设数列{an}的前n项和为Sn,且方程x2-anx-an=0有一根为Sn-1,其中an=
S1,n=1
Sn-Sn-1,n≥2

(1)求S1,S2,S3的值;
(2)猜出Sn的表达式,并用数学归纳法证明.
考点:数学归纳法,数列递推式
专题:综合题,点列、递归数列与数学归纳法
分析:(1)先确定Sn-1Sn-2Sn+1=0,再计算S1,S2,S3的值;
(2)由(1)猜想Sn=
n
n+1
,用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当当n=1时,已知结论成立,第二步,先假设n=k时结论成立,利用此假设结合题设条件证明当n=k+1时,结论也成立即可.
解答: 解:(1)由题设(Sn-1)2-an(Sn-1)-an=0,
Sn2-2Sn+1-anSn=0.
当n≥2时,an=Sn-Sn-1
代入上式得Sn-1Sn-2Sn+1=0.①
由(1)得S1=a1=
1
2
,S2=a1+a2=
1
2
+
1
6
=
2
3

由①可得S3=
3
4

(2)由(1)猜想Sn=
n
n+1

下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即Sk=
k
k+1

当n=k+1时,由①得Sk+1=
1
2-Sk
,即Sk+1=
k+1
k+2
,故n=k+1时结论也成立.
综上,由(i)、(ii)可知Sn=
n
n+1
对所有正整数n都成立.
点评:本题考查数列的函数特性,考查考查了数学归纳法,数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基);2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网