题目内容

在△ABC中,角A,B,C所对的边分别为a,b,c,且(2c-a)cosB=bcosA.
(1)求cosB的值;
(2)若a=3,b=2
2
,求c的值.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)利用正弦定理化简已知等式,变形后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosB的值,即可确定出B的度数;
(2)利用余弦定理列出关系式,将b,a以及cosB的值代入求出c的值.
解答: 解:(1)已知等式(2c-a)cosB=bcosA,
由正弦定理化简得:2sinC•cosB-sinAcosB=sinBcosA,
即2sinC•cosB=sinAcosB+sinBcosA=sin(A+B)=sinC,
在△ABC中,sinC≠0,
∴cosB=
1
2
,∴B=
π
3

(2)a=3,b=2
2
,B=
π
3

由余弦定理b2=a2+c2-2accos60°得:
8=9+c2-3c,
解得c=
3+
13
2
点评:本题主要考查了正弦定理和余弦定理的应用.解题的关键是利用这两个定理完成了边角问题的互化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网