题目内容
15.已知${C}_{n}^{0}$,${C}_{n}^{1}$,${C}_{n}^{2}$,…,${C}_{n}^{n}$中最大值的项只有${C}_{n}^{5}$,则${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$=( )| A. | 25 | B. | 28 | C. | 29 | D. | 210 |
分析 根据二项式系数的特征,结合题意得出n,即可求出结果.
解答 解:∵${C}_{n}^{0}$,${C}_{n}^{1}$,${C}_{n}^{2}$,…,${C}_{n}^{n}$中最大值的项只有${C}_{n}^{5}$,
∴n=10,
∴${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$=2n=210.
故选:D.
点评 本题考查了二项式系数的应用问题,是基础题目.
练习册系列答案
相关题目
9.角α的终边上一点的坐标为$(2sin\frac{2π}{3},2cos\frac{2π}{3})$,则sinα等于( )
| A. | $-\frac{1}{2}$ | B. | -1 | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
10.已知双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右顶点为A,B,点M在E上,△ABM为等腰三角形,且顶角θ满足cosθ=-$\frac{1}{3}$,则E的离心率为( )
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |