题目内容
8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴长为4,左、右焦点分别为F1,F2,过F1的动直线l交C于A,B两点,若|AF2|+|BF2|的最大值为7,则b的值为1.分析 由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=8-|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,|AB|=$\frac{2{b}^{2}}{a}$=b2,|BF2|+|AF2|=8-|AB|,由|BF2|+|AF2|的最大值等于7列式求b的值.
解答 解:由椭圆长轴长为4,则a=2,则0<b<2,
∵过F1的直线l交椭圆于A,B两点,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8-|AB|.
当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,
此时|AB|=$\frac{2{b}^{2}}{a}$=b2,∴7=8-b2,
解得b=1.
故答案为:1.
点评 本题考查了直线与圆锥曲线的关系,考查了椭圆的定义,考查椭圆焦点的弦中通径的长最短,属于中档题.
练习册系列答案
相关题目
3.已知在平面直角坐标系xOy内的四点A(1,2),B(3,4),C(-2,2),D(-3,5),则向量$\overrightarrow{AB}$在向量$\overrightarrow{CD}$方向上的投影为( )
| A. | $\frac{{2\sqrt{10}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
13.已知集合A={x|y=log2(x-1)},集合B={x|(x+1)(x-2)≤0},则A∪B=( )
| A. | [-1,+∞) | B. | (1,2] | C. | (1,+∞) | D. | [-1,2] |
11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,P为双曲线右支上一点(异于右顶点),△PF1F2的内切圆与x轴切于点(2,0),过F2作直线l与双曲线交于A,B两点,若使|AB|=b2的直线l恰有三条,则双曲线离心率的取值范围是( )
| A. | (1,$\sqrt{2}$) | B. | (1,2) | C. | ($\sqrt{2}$,+∞) | D. | (2,+∞) |
12.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则P(B|A)=( )
| A. | $\frac{1}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{9}$ | D. | $\frac{2}{3}$ |