题目内容
12.求函数f(x)=$\sqrt{x+1}$的导函数.分析 根据导数的公式进行计算.
解答 解:∵f(x)=$\sqrt{x+1}$,
∴f′(x)=$\frac{1}{2\sqrt{x+1}}$•(x+1)′=$\frac{1}{2\sqrt{x+1}}$.
点评 本题主要考查函数的导数的计算,根据复合函数的导数公式是解决本题的关键.
练习册系列答案
相关题目
2.下列各组函数表示相等函数的是( )
| A. | $f(x)=\left\{{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}}\right.$与 g(x)=|x| | B. | f(x)=2x-1与 $g(x)=\frac{{2{x^2}-x}}{x}$ | ||
| C. | f(x)=|x-1|与 $g(t)=\sqrt{{{(t-1)}^2}}$ | D. | $f(x)=\frac{x-1}{x-1}$与g(t)=1 |
17.椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的点P到直线x-2y+7=0的距离最大时,点P的坐标是( )
| A. | (-$\sqrt{3}$,$\frac{\sqrt{3}}{2}$) | B. | ($\sqrt{3}$,$\frac{\sqrt{3}}{2}$) | C. | (-1,$\frac{3}{2}$) | D. | (1,-$\frac{3}{2}$) |