题目内容

如图,在三棱柱ABC-A1B1C1中,AB⊥AC,AC⊥BB1,AB=A1B=AC=1,BB1=
2

(Ⅰ)求证:A1B⊥平面ABC;
(Ⅱ)若P是棱B1C1的中点,求二面角P-AB-A1的余弦值.
考点:二面角的平面角及求法,直线与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)由已知得AC⊥平面ABB1A1,从而AC⊥A1B,由勾股定理得A1B⊥AB,从而能证明A1B⊥平面ABC.
(Ⅱ)以B为原点,以BC,BA,BB1所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角P-AB-A1的余弦值.
解答: (Ⅰ)证明:∵在三棱柱ABC-A1B1C1中,AB⊥AC,AC⊥BB1
又AB∩BB1=B,∴AC⊥平面ABB1A1
又A1B?平面ABB1A1,∴AC⊥A1B,
∵AB=A1B=AC=1,BB1=
2

AB2+A1B2=AA12,∴A1B⊥AB,
又AC∩AB=A,∴A1B⊥平面ABC.
(Ⅱ)解:以B为原点,以BC,BA,BB1所在直线为x,y,z轴,建立空间直角坐标系,
∵AB=A1B=AC=1,BB1=
2

∴B1(1,0,1),C1
2
+1
,0,1),
P(
2
2
+1,0,1),A(0,1,0),B(0,0,0),
A1(0,0,1),
BA
=(0,1,0),
BP
=(
2
2
+1,0,1),
设平面ABP的法向量
n
=(x,y,z),
n
BP
=(
2
2
+1)x+z=0
n
BA
=y=0
,取x=1,得z=-1-
2
2

n
=(1,0,-1-
2
2
),又平面ABA1的法向量
m
=(1,0,0),
cos<
n
m
>=
n
m
|
n
|•|
m
|
=
1
1+(-1-
2
2
)2
=
34
17

∴二面角P-AB-A1的余弦值为
34
17
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网