题目内容
9.已知等差数列{an}的前n项和为Sn,且3a3=a6+4若S5<10则a2的取值范围是(-∞,2).分析 设此等差数列的公差为d,由3a3=a6+4,可得:d=2a2-4.由S5<10,可得$\frac{5({a}_{2}+{a}_{4})}{2}$=$\frac{5(6{a}_{2}-8)}{2}$<10,解得a2范围即可得出.
解答 解:设此等差数列的公差为d,
∵3a3=a6+4,
∴3(a2+d)=a2+4d+4,可得:d=2a2-4,
∵S5<10,$\frac{5({a}_{2}+{a}_{4})}{2}$=$\frac{5(6{a}_{2}-8)}{2}$<10,解得a2<2.
则a2的取值范围是(-∞,2).
故答案为:(-∞,2).
点评 本题考查了等差数列的通项公式及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.函数f(x)=$\frac{1}{{\sqrt{x-2}}}$的定义域为( )
| A. | (-∞,2)∪(2,+∞) | B. | (2,+∞) | C. | [2,+∞) | D. | (-∞,2) |
1.已知抛物线y2=8x的焦点为F,A、B为抛物线上两点,若$\overrightarrow{AF}=3\overrightarrow{FB}$,则△AOB的面积为( )
| A. | $\frac{4\sqrt{3}}{3}$ | B. | $\frac{16\sqrt{3}}{3}$ | C. | $\frac{32\sqrt{3}}{3}$ | D. | $\frac{64\sqrt{3}}{3}$ |
18.下列四个命题中,正确的是( )
| A. | 若x>1,则?y∈(-∞,1),xy≠1 | B. | 若x=sinθcosθ,则?θ∈(0,π),x≠$\frac{1}{2}$ | ||
| C. | 若x>1,则?y∈(-∞,1),xy=1 | D. | 若x=sinθcosθ,则?θ∈(0,π),x=1 |
19.下列各组函数中,表示同一函数的一组是( )
| A. | f(x)=$\frac{1}{x-1}$,g(x)=$\frac{x+1}{{x}^{2}-1}$ | B. | f(x)=|x+1|,g(x)=$\sqrt{{x}^{2}+2x+1}$ | ||
| C. | f(x)=x0,g(x)=1 | D. | f(x)=3x+2(x≥0),g(x)=2+3x |