题目内容

3.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x<4}\\{1+{2}^{x-1},x≥4}\end{array}\right.$,则f(0)+f(log232)=(  )
A.19B.17C.15D.13

分析 利用函数的解析式,真假求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(4-x),x<4}\\{1+{2}^{x-1},x≥4}\end{array}\right.$,
则f(0)+f(log232)=log24+1+${2}^{lo{g}_{2}32-1}$=2+1+$\frac{1}{2}×32$=19.
故选:A.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网