题目内容
下列角中终边与390°相同的角是( )
| A、30° | B、-30° |
| C、630° | D、-630° |
考点:终边相同的角
专题:三角函数的求值
分析:根据终边相同的角之间相差周角的整数倍,可以表示出与390°的角终边相同的角α的集合,分析题目中的四个答案,找出是否存在满足条件的k值,即可得到答案.
解答:
解:∵与390°的角终边相同的角α的集合为
{α|α=390°+k•360°,k∈Z}
当k=-1时,α=30°
故选:A.
{α|α=390°+k•360°,k∈Z}
当k=-1时,α=30°
故选:A.
点评:本题考查的知识点是终边相同的角,其中根据终边相同的角之间相差周角的整数倍,表示出与390°的角终边相同的角α的集合,是解答本题的关键.
练习册系列答案
相关题目
已知向量
,
,
均为单位向量,且
⊥
,向量
,
与
的夹角分别为
,
,则|
+
+
|=( )
| a |
| b |
| c |
| a |
| b |
| b |
| a |
| c |
| π |
| 4 |
| 3π |
| 4 |
| a |
| b |
| c |
A、
| ||
| B、2 | ||
C、1+
| ||
| D、1 |
如图,已知
=
,则( )

| AB |
| 1 |
| 3 |
| AP |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
点P(x,y)在直线x+y-2=0上,则P到原点距离的最小值是( )
A、2
| ||
B、
| ||
| C、1 | ||
| D、2. |
若直线经过点P(1,1)和点Q(2,t+
),其中t>0,则该直线的倾斜角的取值范围是( )
| 1 |
| t |
A、(0,
| ||||
B、[
| ||||
C、(
| ||||
D、[
|