题目内容
18.已知圆的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),则圆心到直线y=x+3的距离为( )| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
分析 参数方程化为普通方程,即可求出圆心到直线y=x+3的距离.
解答 解:圆的参数方程为$\left\{\begin{array}{l}x=-1+\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),普通方程为(x+1)2+y2=2,
圆心到直线y=x+3的距离为d=$\frac{|-1+3|}{\sqrt{2}}$=$\sqrt{2}$,
故选B.
点评 本题考查参数方程化为普通方程,考查点到直线距离公式的运用,属于基础题.
练习册系列答案
相关题目
9.某厂家为了解广告宣传费与销售轿车台数之间的关系,得到如下统计数据表:
根据数据表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=2.4,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,据此模型预测广告费用为9万元时,销售轿车台数为( )
| 广告费用x(万元) | 2 | 3 | 4 | 5 | 6 |
| 销售轿车y(台数) | 3 | 4 | 6 | 10 | 12 |
| A. | 17 | B. | 18 | C. | 19 | D. | 20 |
6.已知${log_a}b=-1,\;{2^a}>3,\;c>1$,设$x=-{log_b}\sqrt{a}$,y=logbc,$z=\frac{1}{3}a$,则x,y,z的大小关系正确的是( )
| A. | z>x>y | B. | z>y>x | C. | x>y>z | D. | x>z>y |
13.某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:
(Ⅰ)画出散点图,并求y关于x的回归方程;
(Ⅱ)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$x的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 单价x(元/件) | 60 | 62 | 64 | 66 | 68 | 70 |
| 销量y(件) | 91 | 84 | 81 | 75 | 70 | 67 |
(Ⅱ)已知该产品的成本是36元/件,预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?
附:回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$x的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{(x}_{i}-\overline{x}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(x}_{i}-\overline{x})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
10.如果A={x∈R|x>0},B={0,1,2,3},那么集合A∩B=( )
| A. | 空集 | B. | {0} | C. | {0,1} | D. | {1,2,3} |