ÌâÄ¿ÄÚÈÝ
17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆäÖÐ0¡Ü¦Á£¼¦Ð£®ÔÚÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñ=4cos¦È£®Ö±ÏßlÓëÇúÏßC1ÏàÇУ®£¨1£©½«ÇúÏßC1µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢Çó¦ÁµÄÖµ£®
£¨2£©ÒÑÖªµãQ£¨2£¬0£©£¬Ö±ÏßlÓëÇúÏßC2£ºx2+$\frac{{y}^{2}}{3}$=1½»ÓÚA£¬BÁ½µã£¬Çó¡÷ABQµÄÃæ»ý£®
·ÖÎö £¨1£©ÇúÏßC1£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬°Ñ¦Ñ2=x2+y2£¬x=¦Ñcos¦È´úÈë¿ÉµÃCµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓÃÖ±ÏßlÓëÇúÏßC1ÏàÇÐÇó¦ÁµÄÖµ£®
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬´úÈëÇúÏßC2£ºx2+$\frac{{y}^{2}}{3}$=1£¬ÕûÀí¿ÉµÃ10x2+4x-5=0£¬Çó³ö|AB|£¬Qµ½Ö±ÏߵľàÀ룬¼´¿ÉÇó¡÷ABQµÄÃæ»ý£®
½â´ð ½â£º£¨1£©ÇúÏßC1£º¦Ñ=4cos¦È£¬¼´¦Ñ2=4¦Ñcos¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx2+y2=4x£¬Å䷽ΪC1£º£¨x-2£©2+y2=4£¬¿ÉµÃÔ²ÐÄ£¨2£¬0£©£¬°ë¾¶r=2
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=\sqrt{3}+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÆäÖÐ0¡Ü¦Á£¼¦Ð£¬ÆÕͨ·½³ÌΪy-$\sqrt{3}$=k£¨x-1£©£¬k=tan¦Á£¬0¡Ü¦Á£¼¦Ð£¬
¡ßÖ±ÏßlÓëÇúÏßC1ÏàÇУ¬¡à$\frac{|k+\sqrt{3}|}{\sqrt{{k}^{2}+1}}$=2£¬¡àk=$\frac{\sqrt{3}}{3}$£¬¡à¦Á=$\frac{¦Ð}{6}$£»
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=$\frac{\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$£¬´úÈëÇúÏßC2£ºx2+$\frac{{y}^{2}}{3}$=1£¬ÕûÀí¿ÉµÃ10x2+4x-5=0£¬
¡à|AB|=$\sqrt{1+\frac{1}{3}}•\sqrt{£¨-\frac{2}{5}£©^{2}-4¡Á£¨-\frac{1}{2}£©}$=$\frac{6\sqrt{2}}{5}$£¬
Qµ½Ö±ÏߵľàÀëd=$\frac{\frac{4\sqrt{3}}{3}}{\sqrt{\frac{1}{3}+1}}$=2£¬
¡à¡÷ABQµÄÃæ»ýS=$\frac{1}{2}¡Á\frac{6\sqrt{2}}{5}¡Á2$=$\frac{6\sqrt{2}}{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{2\sqrt{3}}{3}$ | B£® | $\sqrt{3}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | 2 |
| A£® | f£¨9£©-1£¼f£¨4£©£¼f£¨1£©+1 | B£® | f£¨1£©+1£¼f£¨4£©£¼f£¨9£©-1 | C£® | f£¨5£©+2£¼f£¨4£©£¼f£¨1£©-1 | D£® | f£¨1£©-1£¼f£¨4£©£¼f£¨5£©+2 |
| A£® | -42 | B£® | 84 | C£® | 42 | D£® | 168 |