ÌâÄ¿ÄÚÈÝ

6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÇÒÔ²C¡ä£ºx2+y2=1¹ýÍÖÔ²CµÄÉ϶¥µãºÍÓÒ½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³ÌºÍÀëÐÄÂÊ£»
£¨2£©ÒÑÖªÖ±ÏßlÓëÍÖÔ²CÖ»ÓÐ1¸ö½»µã£¬Ì½¾¿£ºÊÇ·ñ´æÔÚÁ½¸ö¶¨µãP£¨x1£¬0£©¡¢Q£¨x2£¬0£©£¬ÇÒx1£¼x2£¬Ê¹µÃP¡¢Qµ½Ö±ÏßlµÄ¾àÀëÖ®»ýΪ1£®Èç¹û´æÔÚ£¬Çó³öÕâÁ½¸ö¶¨µãµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃb=c=1£¬a=$\sqrt{2}$£¬½ø¶øµÃµ½CµÄ±ê×¼·½³ÌºÍÀëÐÄÂÊ£»
£¨2£©·ÖÀàÌÖÂÛ£¬ÀûÓÃÖ±ÏßlÓëÍÖÔ²CÓÐÖ»ÓÐÒ»¸ö¹«¹²µã£¬È·¶¨k£¬pµÄ¹ØÏµ£¬ÉèÔÚxÖáÉÏ´æÔÚÁ½µã£¨s£¬0£©£¬£¨t£¬0£©£¬Ê¹Æäµ½Ö±ÏßlµÄ¾àÀëÖ®»ýΪ1£¬½¨Á¢·½³Ì£¬¼´¿ÉÇóµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬b=c=1£¬a=$\sqrt{2}$£¬
¡àÍÖÔ²CµÄ±ê×¼·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}$=1£¬ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£»
£¨2£©£©¢Ùµ±Ö±ÏßlбÂÊ´æÔÚʱ£¬ÉèÖ±Ïßl·½³ÌΪy=kx+p£¬
´úÈëÍÖÔ²·½³ÌµÃ£¨1+2k2£©x2+4kpx+2p2-2=0£®
ÒòΪֱÏßlÓëÍÖÔ²CÓÐÖ»ÓÐÒ»¸ö¹«¹²µã£¬
ËùÒÔ¡÷=16k2p2-4£¨1+2k2£©£¨2p2-2£©=8£¨1+2k2-p2£©=0£¬
¼´1+2k2=p2£®
ÉèÔÚxÖáÉÏ´æÔÚÁ½µã£¨s£¬0£©£¬£¨t£¬0£©£¬Ê¹Æäµ½Ö±ÏßlµÄ¾àÀëÖ®»ýΪ1£¬
Ôò$\frac{|ks+p|}{\sqrt{1+{k}^{2}}}•\frac{|kt+p|}{\sqrt{1+{k}^{2}}}$=1£¬
¼´£¨st+1£©k+p£¨s+t£©=0£¨*£©£¬»ò£¨st+3£©k2+£¨s+t£©kp+2=0 £¨**£©£®
ÓÉ£¨*£©ºã³ÉÁ¢£¬µÃ$\left\{\begin{array}{l}{st+1=0}\\{s+t=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{s=1}\\{t=-1}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{s=-1}\\{t=1}\end{array}\right.$£¬
¶ø£¨**£©²»ºã³ÉÁ¢£®
¢Úµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬Ö±Ïß·½³ÌΪx=¡À$\sqrt{2}$ʱ£¬
¶¨µã£¨-1£¬0£©¡¢F2£¨1£¬0£©µ½Ö±ÏßlµÄ¾àÀëÖ®»ýd1?d2=£¨$\sqrt{2}$-1£©£¨$\sqrt{2}$+1£©=1£®
×ÛÉÏ£¬´æÔÚÁ½¸ö¶¨µã£¨1£¬0£©£¬£¨-1£¬0£©£¬Ê¹Æäµ½Ö±Ïßl µÄ¾àÀëÖ®»ýΪ¶¨Öµ1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²é´æÔÚÐÔÎÊÌâµÄÑо¿£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬Í¬Ê±¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø