题目内容

15.在等差数列{an}中,首项a1=1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)求数列{anbn}的前n项和Sn

分析 (1)由a1=1,bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$(\frac{1}{2})^{{a}_{1}+{a}_{2}+{a}_{3}}=(\frac{1}{2})^{3{a}_{1}+3d}$=$\frac{1}{64}$,可求得公差,即可求出an
(2)由(1)得bn=($\frac{1}{2}$)n,anbn=$\frac{n}{{2}^{n}}$,∴数列{anbn}的前n项和Sn可用错位相减法求得.

解答 解:(1)设等差数列数列{an}的公差为d,
∵a1=1,bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$(\frac{1}{2})^{{a}_{1}+{a}_{2}+{a}_{3}}=(\frac{1}{2})^{3{a}_{1}+3d}$=$\frac{1}{64}$,3a1+3d=6∴d=1
an=1+(n-1)×1=n;
(2)由(1)得bn=($\frac{1}{2}$)n,anbn=$\frac{n}{{2}^{n}}$,
∴数列{anbn}的前n项和Sn
Sn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}+…+\frac{n-1}{{2}^{n-1}}+\frac{n}{{2}^{n}}$,
$\frac{1}{2}{s}_{n}=\\;\\;\\;\\;\\;\\;\\;\$   $\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}+…+\frac{n-1}{{2}^{n}}+\frac{n}{{2}^{n+1}}$
∴$\frac{1}{2}$sn=$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}-\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}-\frac{n}{{2}^{n+1}}$
∴${s}_{n}=2-\frac{2}{{2}^{n}}-\frac{n}{{2}^{n}}$.

点评 本题考查了等差数列的计算,及错位相减法求和,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网