题目内容
3.| A. | [-1,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,1] | C. | [-$\frac{\sqrt{2}}{2}$,1] | D. | [-1,1] |
分析 利用函数图象可得A=1,$\frac{2π}{ω}$=16,ω=$\frac{π}{8}$,利用函数过点(1,1),可求φ,利用正弦函数的图象和性质即可得解所求值域.
解答 解:由题意,A=1,$\frac{2π}{ω}$=16,ω=$\frac{π}{8}$,
∴f(x)=sin($\frac{π}{8}$x+φ),
(1,1)代入可得$\frac{π}{8}$+φ=$\frac{π}{2}$+2kπ,
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,∴φ=$\frac{3π}{8}$,
∴f(x)=sin($\frac{π}{8}$x+$\frac{3π}{8}$),
当x∈[-1,1]时,函数f(x)的值域为[$\frac{\sqrt{2}}{2}$,1],
故选:B.
点评 本题考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,考查了计算能力和数形结合思想,属于基础题.
练习册系列答案
相关题目
13.某几何体的三视图如图所示,则该几何体的体积为( )

| A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{4\sqrt{2}}{3}$ | D. | $\frac{5\sqrt{2}}{3}$ |
11.已知数列{an}的通项公式an=4n-20,则如图算法的输出结果是( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
18.设i是虚数单位,则复数(2+i)(1-i)的虚部为( )
| A. | i | B. | -1 | C. | 3 | D. | -i |
8.某种新产品投放市场一段时间后,经过调研获得了时间x(天数)与销售单价y(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}{w}_{i}$.
(Ⅰ)根据散点图判断,$\widehat{y}$=$\widehat{a}$+$\widehat{b}$x与$\widehat{y}$=$\widehat{c}$+$\frac{\widehat{d}}{x}$哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)
(Ⅱ)根据判断结果和表中数据,建立y关于x的回归方程;
(Ⅲ)若该产品的日销售量g(x)(件)与时间x的函数关系为g(x)=$\frac{-100}{x}$+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{10}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{10}({w}_{i}-\overline{w})^{2}$ | $\sum_{i=1}^{10}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ | $\sum_{i=1}^{10}({w}_{i}-\overline{w})({y}_{i}-\overline{y})$ |
| 1.63 | 37.8 | 0.89 | 5.15 | 0.92 | -20.6 | 18.40 |
(Ⅱ)根据判断结果和表中数据,建立y关于x的回归方程;
(Ⅲ)若该产品的日销售量g(x)(件)与时间x的函数关系为g(x)=$\frac{-100}{x}$+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
15.已知等比数列{an}的前n项积为Tn,若log2a2+log2a8=2,则T9的值为( )
| A. | ±512 | B. | 512 | C. | ±1024 | D. | 1024 |
12.已知x∈($\frac{π}{2}$,π),tanx=-$\frac{4}{3}$,则cos(-x-$\frac{π}{2}$)等于( )
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |