题目内容
在数列{an}中,an+1=
an+2n,求an.
| 1 |
| 2 |
考点:数列递推式
专题:等差数列与等比数列
分析:由已知得an+1-
•2n+1=
(an-
•2n),从而数列{an-
•2n}是以a1-
为首项,以
公比的等比数列,由此能求出an.
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 2 |
解答:
解:∵an+1=
an+2n,∴an+1-
•2n+1=
(an-
•2n),
∴数列{an-
•2n}是以a1-
为首项,以
公比的等比数列,
∴an-
•2n=(a1-
)•(
)n-1,
∴an=(a1-
)•(
)n-1+
•2n.
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
∴数列{an-
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 2 |
∴an-
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 2 |
∴an=(a1-
| 4 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
点评:本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关题目