题目内容
已知{an}为等差数列,Sn为其前n项和,且a3=9,S6=60.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=abn,求数列{bn}的前n项和Tn
(Ⅲ)若
≤
(1+
)(1+
)…(1+
)对n≥2且n∈N*恒成立,求实数m的最大值.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=abn,求数列{bn}的前n项和Tn
(Ⅲ)若
| ||
| 35 |
| 1 | ||
|
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
考点:数列与不等式的综合,数列的求和
专题:新定义,等差数列与等比数列,不等式的解法及应用
分析:(Ⅰ)本题先利用等差数列的通项公式求出其首项和公差,得到等差数列的通项公式;(Ⅱ)再利用(1)的结论,结合新数列的定义,求出新的数列的通项公式;(Ⅲ)利用n的代数式的单调性,求出相应式子的最值,得到本题结论.
解答:
解:(I)由已知得
,
解得
,
∴an=2n+3.
(II)∵an=2n+3,
∴bn+1=2bn+3,
∴bn+1+3=2(bn+3),
又b1+3=4,
∴{bn+3}是以4为首项2为公比的等比数列.
∴bn+3=4•2n-1,bn=2n+1-3.
∴Tn=
-3n=2n+2-3n-4.
(Ⅲ)设An=(1+
)•(1+
)…(1+
)•
≤(1+
)•(1+
)…(1+
)•
≤(1+
)•(1+
)…(1+
)•
≤(1+
)•(1+
)…(1+
)•
…
≤(1+
)•(1+
)…(1+
)•
,
则当n≥2且n∈N*时,
=
=
=
•
=
=
>
=1=
>1.
所以An+1>An,即当n增大时,An也增大.
要使
≤(1+
)•(1+
)…(1+
)•
≤
≤(1+
)•(1+
)…(1+
)•
≤(1+
)•(1+
)…(1+
)•
≤(1+
)•(1+
)…(1+
)•
…
≤(1+
)•(1+
)…(1+
)•
对n≥2且n∈N*恒成立,
只需
≤(An)min即可.
∵(An)min=A2=
•
=
.
∴
≤
,即m≤6,
所以实数m的最大值为6.
|
解得
|
∴an=2n+3.
(II)∵an=2n+3,
∴bn+1=2bn+3,
∴bn+1+3=2(bn+3),
又b1+3=4,
∴{bn+3}是以4为首项2为公比的等比数列.
∴bn+3=4•2n-1,bn=2n+1-3.
∴Tn=
| 4•(1-2n) |
| 1-2 |
(Ⅲ)设An=(1+
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
则当n≥2且n∈N*时,
| An+1 |
| An |
(1+
| ||||||||||
(1+
|
| ||||||||||
|
| ||||
|
=
| 2n+4 |
| 2n+3 |
| ||
|
| 2n+4 | ||
|
| 2n+4 | ||
|
| 2n+4 | ||
|
| ||
|
所以An+1>An,即当n增大时,An也增大.
要使
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
| ||
| 35 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 | ||
|
只需
| ||
| 35 |
∵(An)min=A2=
| 6 |
| 5 |
| 1 | ||
|
6
| ||
| 35 |
∴
| ||
| 35 |
6
| ||
| 35 |
所以实数m的最大值为6.
点评:本题考查了等差数列通项公式的直接运用和技巧性运用,还利用单调性对数列相关最值进行研究,有一定的难度,属于难题.
练习册系列答案
相关题目