题目内容

已知{an}为等差数列,Sn为其前n项和,且a3=9,S6=60.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=1,bn+1=abn,求数列{bn}的前n项和Tn
(Ⅲ)若
7
m
35
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an-1
)对n≥2且n∈N*恒成立,求实数m的最大值.
考点:数列与不等式的综合,数列的求和
专题:新定义,等差数列与等比数列,不等式的解法及应用
分析:(Ⅰ)本题先利用等差数列的通项公式求出其首项和公差,得到等差数列的通项公式;(Ⅱ)再利用(1)的结论,结合新数列的定义,求出新的数列的通项公式;(Ⅲ)利用n的代数式的单调性,求出相应式子的最值,得到本题结论.
解答: 解:(I)由已知得
a1+2d=9
6a1+
6×5×d
2
=60

解得
a1=5
d=2

∴an=2n+3.
(II)∵an=2n+3,
∴bn+1=2bn+3,
∴bn+1+3=2(bn+3),
又b1+3=4,
∴{bn+3}是以4为首项2为公比的等比数列.
bn+3=4•2n-1bn=2n+1-3
Tn=
4•(1-2n)
1-2
-3n=2n+2-3n-4

(Ⅲ)设An=(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3

则当n≥2且n∈N*时,
An+1
An
=
(1+
1
a1
)•(1+
1
a2
)…(1+
1
an
)•
1
2n+5
(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
1
2n+5
(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)
1
2n+3
(1+
1
a1
)(1+
1
a2
)…(1+
1
an-1
)
=
2n+3
(1+
1
an
)
2n+5

=
2n+4
2n+3
2n+3
2n+5
=
2n+4
(2n+3)(2n+5)
=
2n+4
4n2+16n+15
2n+4
4n2+16n+16
=1
=
4n2+16n+16
4n2+16n+15
>1.
所以An+1>An,即当n增大时,An也增大.
要使
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
7
m
35
≤(1+
1
a1
)•(1+
1
a2
)…(1+
1
an-1
)•
1
2n+3
对n≥2且n∈N*恒成立,
只需
7
m
35
≤(An)min
即可.
(An)min=A2=
6
5
1
7
=
6
7
35

7
m
35
6
7
35
,即m≤6,
所以实数m的最大值为6.
点评:本题考查了等差数列通项公式的直接运用和技巧性运用,还利用单调性对数列相关最值进行研究,有一定的难度,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网