题目内容
11.等差数列{an}的通项为an=2n-1,其前n项和为Sn,若Sm是am,am+1的等差中项,则m的值为( )| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
分析 由等差数列知Sm=$\frac{1+2m-1}{2}$•m=m2,am=2m-1,am+1=2m+1;从而求得.
解答 解:∵等差数列{an}的通项为an=2n-1,
∴Sm=$\frac{1+2m-1}{2}$•m=m2,am=2m-1,am+1=2m+1;
∴2m-1+2m+1=2m2,
解得,m=2;
故选:B.
点评 本题考查了等差数列的性质的判断与应用,属于基础题.
练习册系列答案
相关题目
2.已知实数x,y满足约束条件$\left\{\begin{array}{l}x+2y≤6\\ 2x-y≤6\\ x≥0,y≥0\end{array}\right.$则x-3y>0的概率是( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{3}{5}$ |
19.为了得到函数的图象y=sin3x,只需把函数y=sin(3x+1)的图象上所有的点( )
| A. | 向左平移1个单位长度 | B. | 向右平移1个单位长度 | ||
| C. | 向左平移$\frac{1}{3}$个单位长度 | D. | 向右平移$\frac{1}{3}$个单位长度 |
16.若sinx=$\frac{\sqrt{5}}{5}$,则cos2x=( )
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{3}{\sqrt{5}}$ | D. | $\frac{3}{\sqrt{5}}$ |
20.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列结论中正确的是( )
| A. | 若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈${M_{{α_1}•{α_2}}}$ | |
| B. | 若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$ | |
| C. | 若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈${M_{{α_1}+{α_2}}}$ | |
| D. | 若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)-g(x)∈${M_{{α_1}-{α_2}}}$ |