题目内容

如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:MN⊥平面PCD.
考点:直线与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)取CD的中点E,连接NE,ME,可证NE∥PD,EM∥DA,从而面NEM∥面PDA,即可证明MN∥平面PAD;
(2)先证明MN⊥CD,由PM=MC,M、N分别是AB、PC的中点,可证MN⊥PC,CD∩PC=C,从而得证.
解答:
证明:(1)取CD的中点E,连接NE,ME,
∵M、N分别是AB、PC的中点,
∴NE∥PD,EM∥DA,
∴面NEM∥面PDA,
∴MN∥平面PAD;
(2)∵底面ABCD是矩形,PA⊥平面ABCD,
∴CD⊥PA,CD⊥AD,PA∩AD=A
∴CD⊥平面PAD,
∴CD⊥PD,
∵EN∥PD
∴EN⊥CD
又∵CD⊥EM,EM∩EN=E
∴CD⊥平面ENM
∴MN⊥CD
∵PM=
PA2+AM2
=
a2+(
1
2
AB)2
=
BC2+MB2
=MC,M、N分别是AB、PC的中点,
∴MN⊥PC,CD∩PC=C
∴MN⊥平面PCD.
点评:本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网