题目内容
8.设全集U=R,集合A={x|-1≤x<3},B={x|2x-4≤x-2}.(1)求A∩(∁UB);
(2)若函数f(x)=lg(2x+a)的定义域为集合C,满足A⊆C,求实数a的取值范围.
分析 (1)由全集U=R,以及B,求出B的补集,找出A与B补集的交集即可;
(2)根据负数与零没有对数求出f(x)的定义域确定出C,根据A为C的子集,确定出a的范围即可.
解答 解:(1)∵全集U=R,B={x|x≤2},
∴∁UB={x|x>2},
∵A={x|-1≤x<3},
∴A∩(∁UB)={x|2<x<3};
(2)函数f(x)=lg(2x+a)的定义域为集合C={x|x>-$\frac{a}{2}$},
∵A⊆C,∴-$\frac{a}{2}$<-1,
∴a>2.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
19.等比数列{an}中,an>0,a5a6=9,则log3a1+log3a2+log3a3+…+log3a10=( )
| A. | 12 | B. | 10 | C. | 8 | D. | 2+log35 |
3.设函数f(x)=$\frac{{e}^{2}{x}^{2}+1}{x}$,g(x)=$\frac{{e}^{2}x}{{e}^{x}}$,对任意${x_1},{x_2}∈({\frac{1}{e},+∞})$,不等式$\frac{{g({x_1})}}{k}<\frac{{f({x_2})}}{k+2}$恒成立,则正数k的取值范围是( )
| A. | (1,+∞) | B. | [1,+∞) | C. | (2,+∞) | D. | [2,+∞) |
13.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是( )
| A. | 取出的鞋不成对的概率是$\frac{4}{5}$ | |
| B. | 取出的鞋都是左脚的概率是$\frac{1}{5}$ | |
| C. | 取出的鞋都是同一只脚的概率是$\frac{2}{5}$ | |
| D. | 取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是$\frac{12}{25}$ |
20.
已知三棱锥O-ABC,点M,N分别为AB,OC的中点,且$\overrightarrow{OA}$=$\vec a$,$\overrightarrow{OB}$=$\vec b$,$\overrightarrow{OC}$=$\vec c$,用$\vec a$,$\vec b$,$\vec c$表示$\overrightarrow{MN}$,则$\overrightarrow{MN}$等于( )
| A. | $\frac{1}{2}(\vec b+\vec c-\vec a)$ | B. | $\frac{1}{2}(\vec a+\vec b-\vec c)$) | C. | $\frac{1}{2}(\vec a-\vec b+\vec c)$ | D. | $\frac{1}{2}(\vec c-\vec a-\vec b)$ |
18.“函数y=f(x)在R上单调递增”是“f'(x)≥0”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |