题目内容
8.如果实数x,y满足约束条件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的最大值为( )| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
分析 作出不等式组对应的平面区域,z=$\frac{y+1}{x+1}$的几何意义是区域内的点到定点(-1,-1)的斜率,利用数形结合进行求解即可.
解答
解:作出约束条件$\left\{\begin{array}{l}{3x+y-6≤0}\\{x-y-2≤0}\\{x≥1}\end{array}\right.$所对应的可行域(如图阴影),z=$\frac{y+1}{x+1}$
的几何意义是区域内的点到定点P(-1,-1)的斜率,
由图象知可知PA的斜率最大,
由$\left\{\begin{array}{l}{x=1}\\{3x+y-6=0}\end{array}\right.$,得A(1,3),
则z=$\frac{3+1}{1+1}$=2,
即z的最大值为2,
故选:C.
点评 本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.
练习册系列答案
相关题目
18.下表是某位理科学生连续5次月考的物理、数学的成绩,结果如下:
(Ⅰ)求该生5次月考物理成绩的平均分和方差;
(Ⅱ)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.(小数点后保留一位有效数字)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值
参考数据:902+852+742+682+632=29394,
90×130×85×125×74×110×68×95+63×90=42595.
| 次数 | 1 | 2 | 3 | 4 | 5 |
| 物理(x分) | 90 | 85 | 74 | 68 | 63 |
| 数学(y分) | 130 | 125 | 110 | 95 | 90 |
(Ⅱ)一般来说,学生的数学成绩与物理成绩有较强的线性相关关系,根据上表提供的数据,求两个变量x,y的线性回归方程.(小数点后保留一位有效数字)
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\overline{x}$,$\overline{y}$表示样本均值
参考数据:902+852+742+682+632=29394,
90×130×85×125×74×110×68×95+63×90=42595.
20.已知集合A={x|2x>1},B={x|x2-5x+6<0},则∁AB( )
| A. | (2,3) | B. | (-∞,2]∪[3,+∞) | C. | (0,2]∪[3,+∞) | D. | [3,+∞) |
17.已知公差不为零的等差数列{an}中,a2=4,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn.
18.已知a>2,函数f(x)=$\left\{\begin{array}{l}{log_a}({x+1})+x-2,x>0\\ x+4-{(\frac{1}{a})^{x+1}}\begin{array}{l}{\;}{x≤0}\end{array}\end{array}$若函数f(x)有两个零点x1,x2,则( )
| A. | ?a>2,x1-x2=0 | B. | ?a>2,x1-x2=1 | C. | ?a>2,|x1-x2|=2 | D. | ?a>2,|x1-x2|=3 |