题目内容
5.Sn为数列{an}的前n项和,已知an>0,an2+an=2Sn.(1)求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,求数列{bn}的前n项和Tn.
分析 (1)由题得an2+an=2Sn,an+12+an+1=2Sn+1,两式子相减得{an}是首项为1,公差为1的等差数列,即可求数列{an}的通项公式;
(2)若bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$,利用错位相减法,求数列{bn}的前n项和Tn.
解答 解:(1)由题得an2+an=2Sn,an+12+an+1=2Sn+1,两式子相减得:
结合an>0得an+1-an=1 …..(4分)
令n=1得a12+a1=2S1,即a1=1,
所以{an}是首项为1,公差为1的等差数列,即an=n…..(6分)
(2)因为bn=$\frac{{a}_{n}}{{2}^{{a}_{n-1}}}$=$\frac{n}{{2}^{n-1}}$(n≥2)
所以Tn=$\frac{2}{2}$+…$\frac{n}{{2}^{n-1}}$+$\frac{n+1}{{2}^{n}}$ ①
$\frac{1}{2}$Tn=$\frac{2}{{2}^{2}}$+…+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$ ②…..(8分)
①-②得$\frac{1}{2}$Tn=1+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{n+3}{{2}^{n+1}}$,
所以数列{bn}的前n项和Tn=3-$\frac{n+3}{{2}^{n}}$.…..(12分)
点评 本题考查数列的通项与求和,考查错位相减法的运用,属于中档题.
练习册系列答案
相关题目
15.已知f(x)=(x2-3)ex(其中x∈R,e是自然对数的底数),当t1>0时,关于x的方程[f(x)-t1][f(x)-t2]=0恰好有5个实数根,则实数t2的取值范围是( )
| A. | (-2e,0) | B. | (-2e,0] | C. | [-2e,6e-3] | D. | (-2e,6e-3) |
13.等比数列{an}中,a2+a4=20,a3+a5=40,则a6=( )
| A. | 16 | B. | 32 | C. | 64 | D. | 128 |
20.圆O的半径为定长,A是平面上一定点,P是圆上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹为( )
| A. | 一个点 | B. | 椭圆 | ||
| C. | 双曲线 | D. | 以上选项都有可能 |
10.若l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )
| A. | 若l∥α,m∥α,则l∥m | B. | 若l⊥m,m?α,则l⊥α | C. | 若l∥α,m?α,则l∥m | D. | 若l⊥α,l∥m,则m⊥α |
15.已知向量$\overrightarrow{OP}=(-8m,-6cos\frac{π}{3})$与单位向量(1,0)所成的角为θ,且$cosθ=-\frac{4}{5}$,则m的值为( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |