题目内容
(1)若
| AB |
| a |
| AC |
| b |
| a |
| b |
| BC |
| AD |
(2)若∠BAC=120°,AB=2,AC=1,求
| BC |
| AD |
(3)若B(-1,
| 3 |
考点:平面向量数量积的运算,平面向量的坐标运算
专题:平面向量及应用
分析:(1)利用向量的三角形法则即可得出;
(2)由∠BAC=120°,AB=2,AC=1,可得
•
=2×1×cos120°=-1.再利用(1)和数量积运算可得
•
=(
-
)•(
+
)=
•
+
2-
2即可得出..
(3)设D(x,y),利用向量的坐标运算和向量相等即可得出.
(2)由∠BAC=120°,AB=2,AC=1,可得
| a |
| b |
| BC |
| AD |
| b |
| a |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| 1 |
| 3 |
| a |
| b |
| 1 |
| 3 |
| b |
| 2 |
| 3 |
| a |
(3)设D(x,y),利用向量的坐标运算和向量相等即可得出.
解答:
解:(1)∵
=
-
=
-
,
=2
,
∴
=
-
=
+
=
(
-
)+
=
+
.
(2)∵∠BAC=120°,AB=2,AC=1,
∴|
|=2,|
|=1,
•
=2×1×cos120°=-1.
由(1)可得
•
=(
-
)•(
+
)=
•
+
2-
2=
×(-1)+
×12-
×22=-
.
(3)设D(x,y),∵
=2
,B(-1,
),C(1,0),
∴(1-x,-y)=2(x+1,y-
)=(2x+2,2y-2
),
∴
,解得
,
∴D(-
,
).
| BC |
| AC |
| AB |
| b |
| a |
| DC |
| BD |
∴
| AD |
| BD |
| BA |
| 1 |
| 3 |
| BC |
| AB |
| 1 |
| 3 |
| b |
| a |
| a |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
(2)∵∠BAC=120°,AB=2,AC=1,
∴|
| a |
| b |
| a |
| b |
由(1)可得
| BC |
| AD |
| b |
| a |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
| 1 |
| 3 |
| a |
| b |
| 1 |
| 3 |
| b |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
(3)设D(x,y),∵
| DC |
| BD |
| 3 |
∴(1-x,-y)=2(x+1,y-
| 3 |
| 3 |
∴
|
|
∴D(-
| 1 |
| 3 |
2
| ||
| 3 |
点评:本题考查了向量的三角形法则、数量积运算、向量的坐标运算和向量相等等基础知识,属于中档题.
练习册系列答案
相关题目