题目内容

12.已知函数f(x)=$\frac{1}{3}$x3-ax2+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y-3=0.
(1)求a,b的值;
(2)求函数f(x)在区间[-2,4]上的最大值.

分析 (1)根据导数的几何意义求出函数在x=1处的导数,从而得到切线的斜率,建立等式关系,再根据切点在函数图象建立等式关系,解方程组即可求出a和b,从而得到函数f(x)的解析式;
(2)先求出f′(x)=0的值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值.

解答 解:(1)f′(x)=x2-2ax,
∵(1,f(1))在x+y-3=0上,
∴y=-x+3=f(1)=$\frac{1}{3}$-a+b=2①,
f′(1)=-1=1-2a②,
由①②解得:a=1,b=$\frac{8}{3}$;
(2)∵f(x)=$\frac{1}{3}$x3-x2+$\frac{8}{3}$,
∴f′(x)=x2-2x,
由f′(x)=0可知x=0和x=2是f(x)的极值点,所以有

x(-∞,0)0(0,2)2(2,+∞)
f′(x)+0-0+
f(x)极大值极小值
所以f(x)的单调递增区间是(-∞,0)和(2,+∞),单调递减区间是(0,2).
∵f(0)=$\frac{8}{3}$,f(2)=$\frac{4}{3}$,f(-2)=-4,f(4)=8,
∴在区间[-2,4]上的最大值为8.

点评 本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数求闭区间上函数的最值等基础题知识,考查运算求解能力,考查数形结合思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网