题目内容
18.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是$\frac{7}{8}$.分析 设送报人到达的时间为x,此人离家的时间为y,以横坐标表示报纸送到时间,以纵坐标表示此人离家时间,建立平面直角坐标系,作图求面积之比即可.
解答 解:设送奶人到达的时间为x,此人离家的时间为y,![]()
以横坐标表示奶送到时间,以纵坐标表示此人离家时间,
建立平面直角坐标系(如图)
则此人离开家前能收到牛奶的事件构成区域如图示
∴所求概率P=1-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=$\frac{7}{8}$.
故答案为$\frac{7}{8}$.
点评 本题考查几何概型的会面问题,准确作图利用面积作为几何测度是解决问题的关键,属中档题.
练习册系列答案
相关题目
8.函数$f(x)=\frac{1}{x^2}$的单调递增区间为( )
| A. | (-∞,0] | B. | [0,+∞) | C. | (0,+∞) | D. | (-∞,0) |
6.下列函数中既是偶函数又在区间(-∞,0)上单调递减的是( )
| A. | y=-x+1 | B. | y=|x| | C. | $y=\frac{1}{x}$ | D. | $y=\frac{1}{{{x^2}+1}}$ |
3.在(x2-x)5的展开式中,含x7项的系数为( )
| A. | -10 | B. | 10 | C. | -15 | D. | 15 |
7.等比数列{an}中,a3=9,前3项和为${S_3}=3\int_0^3{x^2}dx$,则公比q的值是( )
| A. | 1 | B. | $-\frac{1}{2}$ | C. | 1或$-\frac{1}{2}$ | D. | -1或$-\frac{1}{2}$ |
8.已知正四面体ABCD的棱长为a,点E,F,H分别是BC,AD,AE的中点,则$\overrightarrow{AH}•\overrightarrow{AF}$的值为( )
| A. | $\frac{1}{2}{a^2}$ | B. | $\frac{1}{4}{a^2}$ | C. | $\frac{1}{8}{a^2}$ | D. | $\frac{{\sqrt{3}}}{8}{a^2}$ |