题目内容

如图,直线PA与圆O相切于点A,PBC是过点O的割线,∠APC的角平分线交AC于点E,交AB于点D,点H是线段ED的中点,连接AH并延长PC交于点F.证明:A,E,F,D四点共圆.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:连接EF,证明EF∥AB,再证明∠AFE=∠ADE,即可证明A,E,F,D四点共圆.
解答: 证明:连接EF,则
∵直线PA与圆O相切于点A,PBC是过点O的割线,∠APC的角平分线交AC于点E,
∴∠PAB=∠PCA,∠APE=∠CPE,
∴∠ADP=∠PEC,△PAC∽△PBA
∴∠AED=∠ADE,
AC
AB
=
PC
PA

∵点H是线段ED的中点,
∴AF平分∠CAB,
CF
FB
=
AC
AB

∵∠APC的角平分线交AC于点E,
CE
EA
=
PC
PA

CE
EA
=
CF
FB

∴EF∥AB,
∵AB⊥AC,
∴EF⊥AC,
∴∠AEH=∠AFE,
∴∠AFE=∠ADE,
∴A,E,F,D四点共圆.
点评:本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网