题目内容
8.已知等边三角形的边长为1,那么它的平面直观图面积为( )| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{8}$ | C. | $\frac{\sqrt{6}}{8}$ | D. | $\frac{\sqrt{6}}{16}$ |
分析 由已知中正△ABC的边长为1,可得正△ABC的面积,进而根据△ABC的直观图△A′B′C′的面积S′=$\frac{\sqrt{2}}{4}$S,可得答案.
解答 解:∵△ABC的边长为1,
故正△ABC的面积S=$\frac{\sqrt{3}}{4}$,
∵S′=$\frac{\sqrt{2}}{4}$S,
△A′B′C′的面积S′=$\frac{\sqrt{6}}{16}$,
故选:D.
点评 本题考查的知识点是斜二测法画直观图,其中熟练掌握直观图面积S′与原图面积S之间的关系S′=$\frac{\sqrt{2}}{4}$S,是解答的关键.
练习册系列答案
相关题目
18.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:
(Ⅰ)用最小二乘法计算利润额y对销售额x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(千万元) | 2 | 3 | 3 | 4 | 5 |
(Ⅱ)当销售额为4(千万元)时,估计利润额的大小.
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
19.观察:$\sqrt{6}$+$\sqrt{15}$<2$\sqrt{11}$,$\sqrt{5.5}$+$\sqrt{15.5}$<2$\sqrt{11}$,$\sqrt{4-\sqrt{2}}$+$\sqrt{17+\sqrt{2}}$<2$\sqrt{11}$,…,对于任意的正实数a,b,使$\sqrt{a}$+$\sqrt{b}$<2$\sqrt{11}$成立的一个条件可以是( )
| A. | a+b=22 | B. | a+b=21 | C. | ab=20 | D. | ab=21 |
13.
如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依次规律A(8,2)为( )
| A. | $\frac{1}{45}$ | B. | $\frac{1}{86}$ | C. | $\frac{1}{122}$ | D. | $\frac{1}{167}$ |
20.已知曲线f(x)=ax-1+1(a>1)恒过定点A,点A恰在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线C的离心率为( )
| A. | $\sqrt{5}$ | B. | 5 | C. | 2 | D. | 2$\sqrt{2}$ |