题目内容

已知等比数列{an}满足a3-a2=10,a1a2a3=125.
(Ⅰ)求数列an的前n项和Sn
(Ⅱ)设bn=n(Sn+
5
6
),Tn=b1+b2+b3+…+bn,求Tn
考点:数列的求和,等比数列的前n项和
专题:计算题,等差数列与等比数列
分析:(Ⅰ)设等比数列{an}的公比为q,由a1a2a3=125.可得a2=5,又a3-a2=10,a3=15求出首项与公比及前n项和.
(Ⅱ)由(Ⅰ)知,bn=n(Sn+
5
6
)=n[
5
6
(3n-1)+
5
6
]
=
5
6
n•3n
利用错位相减求出前n项和.
解答: 解:(Ⅰ)设等比数列{an}的公比为q,由a1a2a3=125.
可得a2=5,又a3-a2=10,
∴a3=15
q=
a3
a2
=3

a1=
a2
q
=
5
3

Sn=
5
3
(1-3n)
1-3
=
5
6
(3n-1)

(Ⅱ)由(Ⅰ)知,bn=n(Sn+
5
6
)=n[
5
6
(3n-1)+
5
6
]
=
5
6
n•3n

Tn=
5
6
(1×3+2×32+…+n•3n)

An=1×3+2×32+…+n•3n
3An=          1×32+…+(n-1)•3n  +  n•3n+1
②-①得2An=-3-32-33-…-3n+n•3n+1
=-
3-3n+1
1-3
+n•3n+1

An=-
1
2
×
3-3n+1
1-3
+
n
2
3n+1

=
2n-1
4
3n+1+
3
4

Tn=
5
6
An=
10n-5
8
3n+
5
8
点评:本题考查数列通项公式及前n项和的求法,求和的关键是先求通项,据通项特点选择合适的方法,属于一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网