题目内容
1.“a=1”是“复数z=(a2-1)+(a+1)i,(其中i是虚数单位)为纯虚数”的( )条件.| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
分析 利用纯虚数的定义,先判断充分性再判断必要性.
解答 解:当a=1时,复数z=a2-1+(a+1)i=2i为纯虚数,满足充分性;
当z=a2-1+(a+1)i是纯虚数时,有a2-1=0,且a+1≠0,解得a=1,满足必要性.
综上,“a=1”是“复数z=(a2-1)+(a+1)i,(其中i是虚数单位)为纯虚数”的充要条件.
故选:C.
点评 本题考查复数的基本概念、充要条件,属基础题.
练习册系列答案
相关题目
9.
已知某几何体的三视图如图所示,则该几何体的体积为( )
| A. | 216-20π | B. | 216-26π | C. | 216-60π | D. | 216-54π |
13.某直三棱柱的侧棱长等于2,底面为等腰直角三角形且腰长为1,则该直三棱柱的外接球的表面积是( )
| A. | π | B. | 2π | C. | 4π | D. | 6π |