题目内容
16.已知曲线C:(x-y)2+y2=1在矩阵$A[{\begin{array}{l}2&{-2}\\ 0&1\end{array}}]$对应的变换下得到曲线C',则曲线C'的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.分析 设P(x0,y0)为曲线C上任意一点,点P在矩阵A对应的变换下得到点Q(x,y),利用$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,然后求解曲线C′的方程.
解答 解:设P(x0,y0)为曲线C上任意一点,点P在矩阵A对应的变换下得到点Q(x,y),
则:$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,即 $\left\{\begin{array}{l}{x=2{x}_{0}-2{y}_{0}}\\{y={y}_{0}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=\frac{x}{2}+y}\\{{y}_{0}=y}\end{array}\right.$,…(5分)
(注:用逆矩阵的方式求解同样给分)
又(x0-y0)2+y02=4,∴($\frac{x}{2}$+y-y)2+y2=1,即$\frac{{x}^{2}}{4}+{y}^{2}=1$
∴曲线C′的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
故答案为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
点评 本题考查矩阵的变换,曲线方程的求法,考查计算能力,属于基础题.
| A. | 3 | B. | $3\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | 4 |
| A. | 65 | B. | $\frac{105+3\sqrt{34}}{2}$ | C. | $\frac{70+3\sqrt{34}}{2}$ | D. | 60 |
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要 | D. | 既不充分也不必要 |
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{3}{9}$ | D. | $\frac{4}{9}$ |