题目内容
下列函数中,既是偶函,又在[0,1]上单调递增的是( )
| A、y=cosx |
| B、y=-x2 |
| C、y=sinxcos2x |
| D、y=|sinx| |
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:根据函数奇偶性和单调性的性质进行判断即可.
解答:
解:y=cosx是偶函,在[0,1]上单调递减,不满足条件.
y=-x2是偶函,在[0,1]上单调递减,不满足条件.
y=sinxcos2x是奇函数,不满足条件.
y=|sinx|是偶函,在[0,1]上单调递增,满足条件,
故选:D
y=-x2是偶函,在[0,1]上单调递减,不满足条件.
y=sinxcos2x是奇函数,不满足条件.
y=|sinx|是偶函,在[0,1]上单调递增,满足条件,
故选:D
点评:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.
练习册系列答案
相关题目
四面体ABCD的外接球为O,AD⊥平面ABC,AD=2,∠ACB=30°,AB=
,则球O的表面积为( )
| 3 |
| A、32π | ||
| B、16π | ||
| C、12π | ||
D、
|
已知异面直线a,b均与平面α相交,下列命题:
(1)存在直线m?α,使得m⊥a或m⊥b.
(2)存在直线m?α,使得m⊥a且m⊥b.
(3)存在直线m?α,使得m与a和b所成的角相等.
其中不正确的命题个数为( )
(1)存在直线m?α,使得m⊥a或m⊥b.
(2)存在直线m?α,使得m⊥a且m⊥b.
(3)存在直线m?α,使得m与a和b所成的角相等.
其中不正确的命题个数为( )
| A、0 | B、1 | C、2 | D、3 |
cos510°的值为( )
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|
设a=log3π,b=log2
,c=log3
,则( )
| 3 |
| 2 |
| A、a>c>b |
| B、b>c>a |
| C、b>a>c |
| D、a>b>c |
已知集合A={x||x-1|<2},集合B={x|lnx>0},则集合A∩B=( )
| A、(1,3) |
| B、(0,3) |
| C、(-1,3) |
| D、(-1,1) |