题目内容
7.函数y=3-2cos(2x-$\frac{π}{3}$)的单调递减区间是( )| A. | (kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z) | B. | (kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$)(k∈Z) | ||
| C. | (2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$)(k∈Z) | D. | (2kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$)(k∈Z) |
分析 本题即求函数y=2cos(2x-$\frac{π}{3}$)的单调递增区间,再利用余弦函数的单调性,得出结论.
解答 解:函数y=3-2cos(2x-$\frac{π}{3}$)的单调递减区间,即函数y=2cos(2x-$\frac{π}{3}$)的单调递增区间,
令2kπ-π≤2x-$\frac{π}{3}$≤2kπ,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得原函数的减区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
结合所给的选项,故选:B.
点评 本题主要考查余弦函数的单调性,属于基础题.
练习册系列答案
相关题目
17.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B等于( )
| A. | {1,5,7} | B. | {3,5,7} | C. | {3,9} | D. | {1,3} |
15.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为$\sqrt{3}$,BC=$\sqrt{3}$,AC=1,∠ACB=90°,则此球的体积等于( )
| A. | $\frac{40\sqrt{10}}{3}$π | B. | $\frac{64\sqrt{2}}{3}$π | C. | $\frac{8\sqrt{2}}{3}$π | D. | 8π |
2.在△ABC中,点M是BC的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$=( )
| A. | $\overrightarrow{a}$+$\overrightarrow{b}$ | B. | $\overrightarrow{a}$-$\overrightarrow{b}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ | D. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$ |
12.函数f(x)=$\frac{1}{\sqrt{1-{2}^{x}}}$的定义域是( )
| A. | (-∞,$\frac{1}{2}$) | B. | (-∞,0] | C. | (0,+∞) | D. | (-∞,0) |
19.设f(x)是R上的偶函数,且在[0,+∞)上是单调递增,若f(2)=0,则使f(log${\;}_{\frac{1}{2}}$x)<0成立的x的取值范围是( )
| A. | ($\frac{\sqrt{2}}{2}$,4) | B. | (0,$\frac{1}{4}$) | C. | ($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$) | D. | ($\frac{1}{4}$,4) |