题目内容

10.若Sn=cos$\frac{π}{8}$+cos$\frac{2π}{8}$+…+cos$\frac{nπ}{8}$(n∈N+),则在S1,S2,…,S2015中,正数的个数是(  )
A.882B.756C.750D.378

分析 由cos$\frac{π}{8}$>0,cos$\frac{2π}{8}$>0,cos$\frac{3π}{8}$>0,$cos\frac{4π}{8}$=0,…,cos$\frac{15π}{8}$=cos$\frac{π}{8}$>0,cos2π=1.可得S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.可得在S1,S2,…,S16中,正数的个数是6个.利用三角函数的周期性,即可得出.

解答 解:∵cos$\frac{π}{8}$>0,cos$\frac{2π}{8}$>0,cos$\frac{3π}{8}$>0,$cos\frac{4π}{8}$=0,$cos\frac{5π}{8}$=-cos$\frac{3π}{8}$<0,$cos\frac{6π}{8}$=-cos$\frac{2π}{8}$<0,$cos\frac{7π}{8}$=-cos$\frac{π}{8}$<0,cos$\frac{8π}{8}$=-1<0,
$cos\frac{9π}{8}$=-cos$\frac{π}{8}$<0,$cos\frac{10π}{8}$=-cos$\frac{2π}{8}$<0,$cos\frac{11π}{8}$=-cos$\frac{3π}{8}$<0,$cos\frac{12π}{8}$=0,cos$\frac{13π}{8}$=cos$\frac{3π}{8}$>0,cos$\frac{14π}{8}$=cos$\frac{2π}{8}$>0,cos$\frac{15π}{8}$=cos$\frac{π}{8}$>0,cos2π=1.
∴S1>0,…,S6>0,S7=0,S8<0,…,S15<0,S16=0.
在S1,S2,…,S16中,正数的个数是6个.
由三角函数的周期性,可得:在S1,S2,…,S2000,正数的个数有750项.
S2001,…,S2015中,正数的个数也6项.
在S1,S2,…,S2015中,正数的个数是756.
故选:B.

点评 本题考查了三角函数的求值、诱导公式、三角函数的周期性、数列求和,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网