题目内容
1.在平面直角坐标系中,已知点P(3,0)在圆C:(x-m)2+(y-2)2=40内,动直线过点P且交圆C于A、B两点,若△ABC的面积的最大值是20,则实数m的取值范围是( )| A. | (-3,-1]∪[7,9) | B. | [-3,-1]∪[7,9) | C. | [7,9) | D. | (-3,-1] |
分析 根据圆的标准方程得到圆心坐标和半径,利用三角形面积的最大值,确定直线的位置,利用直线和方程的位置关系即可得到结论.
解答
解:圆C:(x-m)2+(y-2)2=40,圆心C(m,2),半径r=2$\sqrt{10}$,
S△ABC=$\frac{1}{2}$r2sin∠ACB=20sin∠ACB,
∴当∠ACB=90时S取最大值20,
此时△ABC为等腰直角三角形,AB=$\sqrt{2}$r=4$\sqrt{5}$,
则C到AB距离=2$\sqrt{5}$,
∴2$\sqrt{5}$≤PC<2$\sqrt{10}$,即2$\sqrt{5}$≤$\sqrt{(m-3)^{2}+4}$<2$\sqrt{10}$,
∴20≤(m-3)2+4<40,即16≤(m-3)2<36,
∵圆C:(x-m)2+(y-2)2=40内,
∴|OP|=$\sqrt{(3-m)^{2}+4}$$<2\sqrt{10}$,即(m-3)2<36,
∴16≤(m-3)2<36,
∴-3<m≤-1或7≤m<9,
故选:A.
点评 本题主要考查直线和圆的位置关系的应用,利用圆的标准方程求出圆心坐标和半径是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关题目
9.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上一点P到焦点距离的最大值为( )
| A. | 4 | B. | 2 | C. | 2$\sqrt{3}$ | D. | 6 |