题目内容

15.已知f(x)是R上的奇函数,f(1)=1,且对任意x∈R都有f(x+4)=f(x)+f(2)成立,则f(2016)+f(2017)=1.

分析 求出f(2)=0,可得f(x)是以4为周期的周期函数,利用函数的周期性和奇偶性进行转化求解,即可得出结论.:

解答 解:∵f(x+4)=f(x)+f(2)中,
∴令x=-2,得f(2)=f(-2)+f(2),即f(-2)=0.
又f(x)是R上的奇函数,故f(-2)=-f(2)=0.f(0)=0,
∴f(2)=0,
故f(x+4)=f(x),
∴f(x)是以4为周期的周期函数,
从而f(2017)=f(4×504+1)=f(1)=1.
f(2016)=f(4×504)=f(0)=0.
故f(2016)+f(2017)=0+1=1,
故答案为:1.

点评 本题主要考查函数值的计算以及奇函数、周期函数的应用,确定f(x)是以4为周期的周期函数是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网