题目内容
16.若抛物线y2=8x的焦点恰好是双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的右焦点,则实数a的值为1.分析 求得抛物线的焦点,双曲线的右焦点,由题意可得方程,解方程即可得到a的值.
解答 解:抛物线y2=8x的焦点为(2,0),
双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的右焦点为($\sqrt{{a}^{2}+3}$,0),
由题意可得为$\sqrt{{a}^{2}+3}$=2,
解得a=1.
故答案为:1.
点评 本题考查双曲线的方程和性质,同时考查抛物线的焦点,考查运算能力,属于基础题.
练习册系列答案
相关题目
4.诚信是立身之本,道德之基.某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“
$\frac{周实际回收水费}{周投入成本}$”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1:
(Ⅰ)计算表1中八周水站诚信度的平均数$\overline{x}$
(Ⅱ)从表1诚信度超过91% 的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率;
(Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2:
请根据提供的数据,判断该主题教育活动是否有效,并根据已有数据说明理由.
$\frac{周实际回收水费}{周投入成本}$”表示每周“水站诚信度”.为了便于数据分析,以四周为一个周期,下表为该水站连续八周(共两个周期)的诚信度数据统计,如表1:
| 第一周 | 第二周 | 第三周 | 第四周 | |
| 第一个周期 | 95% | 98% | 92% | 88% |
| 第二个周期 | 94% | 94% | 83% | 80% |
(Ⅱ)从表1诚信度超过91% 的数据中,随机抽取2个,求至少有1个数据出现在第二个周期的概率;
(Ⅲ)学生会认为水站诚信度在第二个周期中的后两周出现了滑落,为此学生会举行了“以诚信为本”主题教育活动,并得到活动之后一个周期的水站诚信度数据,如表2:
| 第一周 | 第二周 | 第三周 | 第四周 | |
| 第三个周期 | 85% | 92% | 95% | 96% |
6.“-1≤x≤2”是“x2-x-2=0”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 冲要条件 | D. | 既不充分也不必要条件 |