题目内容

9.求下列函数的最值:
(1)f(x)=x3+2x,x∈[-1,1]
(2)f(x)=(x-1)(x-2)2,x∈[0,3].

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最值即可.

解答 解:(1)f′(x)=3x2+2>0,
故f(x)在[-1,1]递增,
f(x)min=f(-1)=-3,f(x)max=f(1)=3;
(2)f′(x)=(x-2)2+2(x-1)(x-2)=(x-2)(3x-4),
令f′(x)>0,解得:x>2或x<$\frac{4}{3}$,
令f′(x)<0,解得:$\frac{4}{3}$<x<2,
故f(x)在[0,$\frac{4}{3}$)递增,在($\frac{4}{3}$,2)递减,在(2,3]递增,
而f(0)=-4,f($\frac{4}{3}$)=$\frac{4}{27}$,f(2)=0,f(3)=2,
故f(x)min=-4,f(x)max=2.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网