题目内容

4.如图,半径为4m的水轮绕着圆心O逆时针做匀速圆周运动,每分钟转动4圈,水轮圆心O距离水面2m,如果当水轮上点P从离开水面的时刻(P0)开始计算时间.
(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;
(2)求点P第一次到达最高点需要的时间.

分析 (1)设点P到水面的距离y(m)与时间t(s)满足函数关系$y=Asin(?t+φ)+2,(-\frac{π}{2}<φ<\frac{π}{2})$,利用周期求得ω,当t=0时,y=0,进而求得φ的值,则函数的表达式可得.
(2)根据正弦函数的图象和性质可得t=5+15k(k∈Z)即当k=0时,即t=5(s)时,点P第一次达到最高点.

解答 解:(1)以O为原点建立如图所示的直角坐标系.
由于水轮绕着圆心O做匀速圆周运动,可设点P到水面的距离y(m)与时间t(s)满足函数关系$y=Asin(?t+φ)+2,(-\frac{π}{2}<φ<\frac{π}{2})$,
∵水轮每分钟旋转4圈,
∴$T=\frac{60}{4}=15$.
∴$?=\frac{2π}{T}=\frac{2π}{15}$.
∵水轮半径为4 m,
∴A=4.
∴$y=4sin(\frac{2π}{15}t+φ)+2,(-\frac{π}{2}<φ<0)$.
当t=0时,y=0.
∴$φ=-\frac{π}{6}$.
∴$y=4sin(\frac{2π}{15}t-\frac{π}{6})+2$.
(2)由于最高点距离水面的距离为6,
∴$6=4sin(\frac{2π}{15}t-\frac{π}{6})+2$.
∴$sin(\frac{2π}{15}t-\frac{π}{6})=1$.
∴$\frac{2π}{15}t-\frac{π}{6}=\frac{π}{2}+2kπ(k∈Z)$.
∴t=5+15k(k∈Z).
∴当k=0时,即t=5(s)时,点P第一次达到最高点.

点评 本题主要考查了在实际问题中建立三角函数模型的问题,考查了运用三角函数的最值,周期等问题确定函数的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网