ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖªµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨2£¬0£©¡¢£¨-2£¬0£©£¬Ö±ÏßAT¡¢BT½»ÓëµãT£¬ÇÒËüÃǵÄбÂÊÖ®»ýΪ³£Êý-¦Ë£¨¦Ë£¾0£¬¦Ë¡Ù1£©£¬µãTµÄ¹ì¼£ÒÔ¼°A£¬BÁ½µã¹¹³ÉÇúÏßC£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£¬²¢ÇóÆä½¹µã×ø±ê£»
£¨¢ò£©Èô0£¼¦Ë£¼1£¬ÇÒÇúÏßCÉϵĵ㵽Æä½¹µãµÄ×î½ü¾àÀëΪ1£¬ÉèÖ±Ïßl£ºy=£¨x-1£©½»ÇúÏßCÓÚE£¬FÁ½µã£¬½»xÖáÓÚµãQ£¬Ö±ÏßAE¡¢AF·Ö±ð½»Ö±Ïßx=3ÓÚµãN¡¢M£®¼ÇÏß¶ÎMNµÄÖеãΪP£¬Ö±ÏßPQµÄбÂÊΪk¡ä£®ÇóÖ¤£ºk•k¡äΪ¶¨Öµ£®
·ÖÎö £¨1£©ÉèT£¨x£¬y£©£¬ÀûÓÃÖ±ÏßµÄбÂʹ«Ê½£¬È¡µÃбÂÊÖ®»ý£¬»¯¼òÕûÀíµÃ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4¦Ë}=1$£¨¦Ë£¾0£¬¦Ë¡Ù1£©¸ù¾Ý¦ËµÄȡֵ·¶Î§£¬ÇóµÃÍÖÔ²·½³Ì¼°½¹µã×ø±ê£»
£¨2£©ÍÖÔ²³¤Öá¶Ëµãµ½Í¬²à½¹µãµÄ¾àÀëÊÇÍÖÔ²Éϵĵ㵽½¹µãµÄ×î½ü¾àÀ룬ÇóµÃ¦ËµÄÖµ£¬½ø¶øÇó³öÇúÏßCµÄ·½³ÌΪ£¬Ö±Ïßy=k£¨x-1£©½»xÖáÓÚQ£¨1£¬0£©£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷k•k¡äΪ¶¨Öµ£®
½â´ð ½â£º£¨¢ñ£©ÉèT£¨x£¬y£©£¬Ôò$\frac{y}{x+2}$•$\frac{y}{x-2}$=-¦Ë£¬»¯¼òµÃ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4{¦Ë}^{2}}=1$£¨x¡Ù¡À2£©£®
ÓÖA£¬BµÄ×ø±ê£¨2£¬0£©¡¢£¨-2£¬0£©£¬Ò²·ûºÏÉÏʽ£®
¹ÊÇúÏßC£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{4¦Ë}=1$£¨¦Ë£¾0£¬¦Ë¡Ù1£©£®
µ±0£¼¦Ë£¼1ʱ£¬ÇúÏßCÊǽ¹µãÔÚxÖáÉϵÄÍÖÔ²£¬½¹µãΪ£¨-$\sqrt{1-¦Ë}$£¬0£©£¬£¨$\sqrt{1-¦Ë}$£¬0£©£»
µ±¦Ë£¾1ʱ£¬ÇúÏßCÊǽ¹µãÔÚyÖáÉϵÄÍÖÔ²£¬½¹µãΪ£¨0£¬-2$\sqrt{¦Ë-1}$£©£¬£¨0£¬2$\sqrt{¦Ë-1}$£©£®![]()
£¨¢ò£©Ö¤Ã÷£ºÓÉÓÚ0£¼¦Ë£¼1£¬ÇúÏßCÊǽ¹µãÔÚxÖáÉϵÄÍÖÔ²£¬Æä½¹µãΪ£¨-$\sqrt{1-¦Ë}$£¬0£©£¬£¨$\sqrt{1-¦Ë}$£¬0£©£¬
ÍÖÔ²µÄ³¤Öá¶Ëµãµ½Í¬²à½¹µãµÄ¾àÀëÊÇÍÖÔ²Éϵĵ㵽½¹µãµÄ×î½ü¾àÀ룮
¹Ê2-2$\sqrt{1-¦Ë}$=1£¬½âµÃ£º¦Ë=$\frac{3}{4}$£¬
ÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
Ö±Ïßy=k£¨x-1£©½»xÖáÓÚQ£¨1£¬0£©£¬ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£º£¨4k2+3£©x2-8k2x+4k2-12=0£¬
¡àx1+x2=$\frac{8{k}^{2}}{4{k}^{2}+3}$£¬¢Ùx1x2=$\frac{4{k}^{2}-12}{4{k}^{2}+3}$£¬¢Ú
Ö±ÏßAE·½³ÌΪ£ºy=$\frac{{y}_{1}}{{x}_{1}-2}$£¨x-2£©£¬½»Ö±Ïßx=3ÓÚµãN£¨3£¬$\frac{{y}_{1}}{{x}_{1}-2}$£©£¬
Ö±ÏßAF·½³ÌΪ£ºy=$\frac{{y}_{2}}{{x}_{2}-2}$£¨x-2£©£¬½»Ö±Ïßx=3Óڵ㣨3£¬$\frac{{y}_{2}}{{x}_{2}-2}$£©£¬
¡àÏß¶ÎMNµÄÖеãΪP£¨3£¬$\frac{1}{2}$£¨$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$£©£©£®
¡àÖ±ÏßPQµÄбÂÊΪ£º
k¡ä=$\frac{\frac{1}{2}£¨\frac{{y}_{1}}{{x}_{1}-2}+\frac{{y}_{2}}{{x}_{2}-2}£©}{3-1}$=$\frac{{y}_{1}{x}_{2}+{y}_{2}{x}_{1}-2£¨{y}_{1}+{y}_{2}£©}{4[{x}_{1}{x}_{2}-2£¨{x}_{1}+{x}_{2}£©+4]}$=$\frac{2k{x}_{1}{x}_{2}-3k£¨{x}_{1}+{x}_{2}£©+4k}{4[{x}_{1}{x}_{2}-2£¨{x}_{1}+{x}_{2}£©+4]}$¢Û
½«¢Ù¢Ú´úÈë¢Ûʽ»¯¼òµÃk¡ä=-$\frac{3}{4k}$£¬
¡àk•k¡ä=-$\frac{3}{4}$£¬
¡àk•k¡äΪ¶¨Öµ£®
µãÆÀ ±¾Ì⿼²éÇúÏß·½³Ì¼°½¹µã×ø±êµÄÇ󷨣¬¿¼²éÁ½Ö±ÏßµÄбÂÊÖ®»ýΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖÊ¡¢Î¤´ï¶¨Àí¡¢Ö±Ïß·½³ÌµÄÐÔÖʵĺÏÀíÔËÓã¬ÊôÓÚÖеµÌ⣮
| A£® | $x=-\frac{¦Ð}{3}$ | B£® | $x=\frac{¦Ð}{3}$ | C£® | $x=\frac{¦Ð}{6}$ | D£® | $x=\frac{2¦Ð}{3}$ |
| A£® | a£¾b£¾0 | B£® | b£¾a | C£® | a£¼b£¼0 | D£® | ab£¨a-b£©£¼0 |
| A£® | $\frac{21}{25}$ | B£® | $\frac{25}{21}$ | C£® | $\frac{4}{5}$ | D£® | $\frac{5}{4}$ |