题目内容
17.已知$tanα=-\frac{3}{4}$,则sinα(sinα-cosα)=( )| A. | $\frac{21}{25}$ | B. | $\frac{25}{21}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
分析 利用同角三角函数的基本关系,求得要求式子的值.
解答 解:$sinα(sinα-cosα)=\frac{{{{sin}^2}α-sinαcosα}}{{{{sin}^2}α+{{cos}^2}α}}=\frac{{{{tan}^2}α-tanα}}{{{{tan}^2}α+1}}=\frac{21}{25}$,
故选:A.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关题目
7.已知函数f(x)=x2-πx,α,β,γ∈(0,π),且sinα=$\frac{1}{3}$,tanβ=$\frac{5}{4}$,cosγ=-$\frac{1}{3}$,则( )
| A. | f(α)>f(β)>f(γ) | B. | f(α)>f(γ)>f(β) | C. | f(β)>f(α)>f(γ) | D. | f(β)>f(γ)>f(α) |
5.已知$\overrightarrow a$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,|$\overrightarrow{a}+\overrightarrow{b}$|=4,|$\overrightarrow{a}$-$\overrightarrow{b}$|=( )
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | $\sqrt{10}$ |
6.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B为切点,若四边形PACB面积的最小值是2,则k的值是( )
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{21}}{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
7.若集合A={x|x2+3x-4>0},B={x|-2<x≤3},且M=A∩B,则有( )
| A. | (∁RB)⊆A | B. | B⊆A | C. | 2∈M | D. | 1∈M |