题目内容
已知函数y=f(x)的定义域为R,并对一切实数x,都满足f(2+x)=f(2-x).
(1)证明:函数y=f(x)的图像关于直线x=2对称;
(2)若f(x)是偶函数,且x∈[0,2]时,f(x)=2x-1,求x∈[-4,0]时的f(x)的表达式.
(1)证明:设P(x0,y0)是函数y=f(x)图像上任一点,则y0=f(x0),
点P关于直线x=2的对称点为P′(4-x0,y0).
因为f(4-x0)=f[2+(2-x0)]
=f[2-(2-x0)]=f(x0)=y0,
所以P′也在y=f(x)的图像上,
所以函数y=f(x)的图像关于直线x=2对称.
(2)当x∈[-2,0]时,-x∈[0,2],
所以f(-x)=-2x-1.
又因为f(x)为偶函数,
所以f(x)=f(-x)=-2x-1,x∈[-2,0].
当x∈[-4,-2]时,4+x∈[0,-2],
所以f(4+x)=2(4+x)-1=2x+7.
而f(4+x)=f(-x)=f(x),
所以f(x)=2x+7,x∈[-4,-2].
所以f(x)=
练习册系列答案
相关题目