题目内容

6.关于x的方程asinx+bcosx+c=0在[0,π]上有两个相异实根α,β,则sin(α+β)=(  )
A.$\frac{ab+bc+ac}{{a}^{2}+{b}^{2}+{c}^{2}}$B.-$\frac{ab+bc+ac}{{a}^{2}+{b}^{2}+{c}^{2}}$
C.$\frac{2ab}{{a}^{2}+{b}^{2}}$D.-$\frac{2ab}{{a}^{2}+{b}^{2}}$

分析 将α、β代入方程后相减,然后根据和差化积公式求出tan$\frac{α+β}{2}$的值,再由万能公式可得答案.

解答 解:∵方程asinx+bcosx+c=0在[0,π]内有两个相异的实根α、β,
∴asinα+bcosα+c=0  ①
asinβ+bcosβ+c=0    ②
∴方程①-②得a(sinα-sinβ)+b(cosα-cosβ)=0,
即a×(2sin$\frac{α-β}{2}$cos$\frac{α+β}{2}$)-b(2sin$\frac{α+β}{2}$sin$\frac{α-β}{2}$)=0,
∴2sin$\frac{α-β}{2}$(acos$\frac{α+β}{2}$-bsin$\frac{α+β}{2}$)=0,
∵α≠β,∴sin$\frac{α-β}{2}$≠0,
∴acos$\frac{α+β}{2}$-bsin$\frac{α+β}{2}$=0,则tan$\frac{α+β}{2}$=$\frac{a}{b}$,
∴sin(α+β)=$\frac{2tan\frac{α+β}{2}}{1+ta{n}^{2}\frac{α+β}{2}}$=$\frac{2ab}{{a}^{2}+{b}^{2}}$.
故选:C.

点评 本题主要考查和差化积公式和万能公式的应用.三角函数部分公式比较多,要强化记忆,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网