题目内容
15.在△ABC中,已知角A、B、C所对的边分别为a,b,c.已知A=$\frac{π}{3}$,a=$\sqrt{3}$,b=2.则B=( )| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 利用正弦定理即可得出.
解答 解:在△ABC中,由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴sinB=$\frac{bsinA}{a}$=$\frac{2sin\frac{π}{3}}{\sqrt{3}}$=1,
又B∈(0,π),∴B=$\frac{π}{2}$.
故选:D.
点评 本题考查了正弦定理的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
5.
如图,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左焦点、左顶点分别为F,C,过原点O的直线与两分支分别交于A,B(异于C点),若直线AF交BC于D点,且$\overrightarrow{AD}$=2$\overrightarrow{DF}$,则双曲线的离心率为( )
| A. | 2 | B. | 3 | C. | 4 | D. | $\frac{3}{2}$ |
3.已知F为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,且双曲线C的焦距为2c,定点G(0,c),若双曲线C上存在点P满足|PF|=|PG|,则双曲线的离心率的取值范围是( )
| A. | ($\sqrt{2}$,+∞) | B. | (1,$\sqrt{2}$) | C. | [$\sqrt{3}$,+∞) | D. | (1,$\sqrt{3}$) |
20.已知f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,则满足f(a)-f(-a)<1的a的取值范围是( )
| A. | (-∞,3) | B. | (-∞,log23) | C. | (3,+∞) | D. | (log23,+∞) |