题目内容
12.设a=($\frac{2}{3}$)0.2,b=1.30.7,c=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,则a,b,c的大小关系是( )| A. | a>c>b | B. | b>a>c | C. | c>a>b | D. | a>b>c |
分析 利用指数函数的单调性即可得出.
解答 解:∵1>a=($\frac{2}{3}$)0.2>($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,b=1.30.7>1,
则a,b,c的大小关系是b>a>c.
故选:B.
点评 本题考查了指数函数的单调性,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.下列积分值为2的是( )
| A. | ${∫}_{0}^{1}$2xdx | B. | ∫01exdx | C. | ${∫}_{1}^{e}$$\frac{1}{x}$dx | D. | ∫0πsinxdx |
20.已知定义在[-1,+∞]上的函数在区间[-1,3)上的解析式为f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}(-1≤x<1)}\\{\frac{3}{2}-\frac{3}{x}×|x-2|(1≤x<3)}\end{array}\right.$,当x≥3时,函数满足f(x)=f(x-4)+1,若函数g(x)=f(x)-kx-k有6个零点,则实数k的取值或取值范围为( )
| A. | ($\frac{5}{14}$,$\frac{9+\sqrt{21}}{40}$) | B. | $\frac{5}{14}$ | C. | ($\frac{5}{12}$,$\frac{1}{2}$) | D. | ($\frac{5}{14}$,$\frac{5}{12}$) |
16.已知函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$-…+$\frac{{x}^{2013}}{2013}$-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$,则下列结论正确的是( )
| A. | f(x)在(0,1)上恰有一个零点 | B. | f(x)在(0,1)上恰有两个零点 | ||
| C. | f(x)在(-1,0)上恰有一个零点 | D. | f(x)在(-1,0)上恰有两个零点 |